Plane Maps with denominator. Part II: Noninvertible Maps with Simple Focal Points
نویسندگان
چکیده
This paper is the second part of an earlier work devoted to the properties specific to maps of the plane characterized by the presence of a vanishing denominator, which gives rise to the generation of new types of singularities, called set of nondefinition, focal points and prefocal curves. A prefocal curve is a set of points which are mapped (or “focalized”) into a single point, called focal point, by the inverse map when it is invertible, or by at least one of the inverses when it is noninvertible. In the case of noninvertible maps, the previous text dealt with the simplest geometrical situation, which is nongeneric. To be more precise this situation occurs when several focal points are associated with a given prefocal curve. The present paper defines the generic case for which only one focal point is associated with a given prefocal curve. This is due to the fact that only one inverse of the map has the property of focalization, but with properties different from those of invertible maps. Then the noninvertible maps of the previous Part I appear as resulting from a bifurcation leading to the merging of two prefocal curves, without merging of two focal points.
منابع مشابه
Plane Maps with denominator. Part III: Nonsimple Focal Points and Related bifurcations
This paper continues the study of the global dynamic properties specific to maps of the plane characterized by the presence of a denominator that vanishes in a one-dimensional submanifold. After two previous papers by the same authors, where the definitions of new kinds of singularities, called focal points and prefocal sets, are given, as well as the particular structures of the basins and the...
متن کاملContact bifurcations related to critical sets and focal points in iterated maps of the plane
In this survey article we briefly describe some properties of difference equations obtained by the iterated applications of two-dimensional maps of the plane and we try to characterize the qualitative changes (or bifurcations) of the asymptotic behavior of the solutions, as some parameters are varied, in terms of contacts between particular curves and invariant sets which characterize the globa...
متن کاملBasin boundaries and focal points in a map coming from Bairstow's method.
This paper is devoted to the study of the global dynamical properties of a two-dimensional noninvertible map, with a denominator which can vanish, obtained by applying Bairstow's method to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and prefoca...
متن کاملOn a Particular Foliation Associated with a Polynomial Family of Noninvertible Maps of the Plane
The present work describes a family of polynomial noninvertible maps of the plane shared within two open regions: (i) (denoted by Z0) each point having no real preimage, and (ii) (denoted by Z2) each point having two real preimages. The regions Z0, Z2 are separated by the critical curve LC, locus of points having two coincident preimages. Z2 is made up of two sheets (giving rise to a plane foli...
متن کاملKnot Points in Two-Dimensional Maps and Related Properties
We consider the class of two-dimensional maps of the plane for which there exists a whole onedimensional singular set (for example, a straight line) that is mapped into one point, called a “knot point” of the map. The special character of this kind of point has been already observed in maps of this class with at least one of the inverses having a vanishing denominator. In that framework, a knot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 13 شماره
صفحات -
تاریخ انتشار 2003